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MAP in Undirected Graphical Models

Real-world problem:s:
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Find most likely assignment:
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How to solve MAP!?

MAP is known to be NP-hard (e.g., MAP on binary
MRFs is equivalent to Max-Cut)

Real-world MAP problems are not necessarily as
hard as theoretical worst case




How to solve MAP!?

New toolkit: Message-passing algorithms based on

linear programming relaxations

(Schlensinger 76, Kolmogorov & Wainwright ‘05, Vontobel & Koetter ‘06,
Johnson et al. ’07, Komodakis et al. ‘07, Globerson & Jaakkola ’08...)

Solves exactly when LP relaxation is tight:
trees, binary submodular MRFs, and matchings

In practice, we seldom have these structures

By tightening the relaxation (problem specific), we

can solve hard real-world problems, exactly




MAP as a linear program

We can formulate the MAP problem as a linear program
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where the variables (i;; are defined over edges.

The marginal polytope constrains the [i;;to be marginals of some
distribution:
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Very many constraints!

T~ Vertices correspond to assignments




Relaxing the MAP LP
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Relaxing the MAP LP
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Tightening the LP

max Y Oy(wi,z;) < max D D miglas,x)0 (i, zj)
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Tightening the LP

Imnax E Hij(l'i,xj) S 1max E E uij(xi,xj)ﬁij(:vi,xj)
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Tightening the LP

Imnax E Hij(l'i,xj) S 1max E E uij(xi,xj)ﬁij(:vi,xj)
z = pes <
(i,J)€E (i,j)EE xi,x;
Such that M(G) C S
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Tightening the LP

Imnax E Hij(l'i,xj) S 1max E E uij(xi,xj)@j(:vi,xj)
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®e
Stri

Objective ® ®
@ ®— MAP

SQ Sl S2 Spair.“ Stri M(G)
Relaxation

i
b'k Z“iik(xiijaxk):Nz‘j(xz‘,ﬂﬁj) }_ Triplet

Tk consistency




Tightening the LP

Imnax E Hij(l'i,xj) S 1max E E uij(xi,xj)@j(:vi,xj)
z = pes <
(i,J)€E (i,j)EE xi,x;
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Tightening the LP
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d Can we efficiently solve the LP?
d  What clusters to add?

(J How do we avoid re-solving?




Dual

Our solution MAP it | O

d  Can we efficiently solve the LP?

d  We work in one of the dual LPs (Globerson & Jaakkola ‘07)
[ Dual can be solved by an efficient message-passing algorithm
[ Corresponds to coordinate-descent algorithm

J What cluster to add next?

d  We propose a greedy bound minimization algorithm

Add clusters with guaranteed improvement — upper bound gets tighter

(d How do we avoid re-solving?

d “Warm start” of new messages using the old messages




Dual algorithm

|. Run message-passing
2. Decode assignment from messages

3. Choose a cluster to add to relaxation
4. Warm start: initialize new cluster messages
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Dual algorithm
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What cluster to add next!?
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What cluster to add next!?
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What cluster to add next!?

If dual éljécf'edszes %%gre wxs‘; #ﬁ@tration
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Coarsened cluster consistency

[1 Each new cluster requires adding a large number of LP
variables 1k (7i, 7, 7) and constraints

[1 Is it possible to use just a subset of these constraints!?

[1 We give a new class of sparse cluster constraints, enforcing
consistency on coarsened variables

(Sontag, Globerson, Jaakkola, NIPS ‘08)




Experiments: Protein design

O]

O o0od

Given protein’s 3D shape, choose amino-acids giving the most stable
structure

Side-chains —

0. (x, x
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' . _— X; Xl-
Protein backbone .
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(MRFs from Yanover, Meltzer, Weiss ‘06)

Each state corresponds to a choice of amino-acid and side-chain angle
MRFs have 41-180 variables, each variable with 95-158 states

Hard to solve

B Very large treewidth

B Many small cycles (20,000 triangles) and frustration




Primal LP, pairwise, is Iarge
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CPLEX can only run on 3:
must move to dual!
(Yanover, Meltzer, Weiss, JMLR ‘06)




Protein design results

[1 Pairwise constraints solve only 2 of the 97 proteins

[1 Iteratively tightening relaxation with triplets, we exactly
solve 96 of the 97 proteins (!!!

[1 Using the coarsened clusters, average time to solve 15
largest proteins is |.5 hours

[1 Bound criterion finds the right constraints: Only 5 to 735
triplets needed to be added per problem




Coarsening clusters really helps
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Related Work

[1 Similar ideas can be done directly in the primal

B Selection criteria of constraint violation instead of bound minimization
B (Sontag & Jaakkola ’08)

[1 Can also be applied to marginals

B Guidance by bound on partition function rather than MAP value

B Similar to region-pursuit algorithm for generalized BP (Welling
UAI ’04)




Conclusions & Future Work

[0 New toolkit of message-passing algorithms based on dual LP
relaxations
+

Iterative tightening of LP relaxation

Ability to solve interesting real world-problems

[1 More generally, when can we expect these MAP inference
techniques to be successful?

[0 How should we do learning with approximate inference — in
particular, with LP relaxations!?




